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a b s t r a c t

Structured-light systems (SLSs) are widely used in active stereo vision to perform 3D modelling of a sur-

face of interest. We propose a flexible method to calibrate SLSs projecting point patterns. The method is

flexible in two respects. First, the calibration is independent of the number of points and their spatial dis-

tribution inside the pattern. Second, no positioning device is required since the projector geometry is

determined in the camera coordinate system based on unknown positions of the calibration board.

The projector optical center is estimated together with the 3D rays originating from the projector using

a numerical optimization procedure. We study the 3D point reconstruction accuracy for two SLSs involv-

ing a laser based projector and a pico-projector, respectively, and for three point patterns. We finally

illustrate the potential of our active vision system for a medical endoscopy application where a 3D car-

tography of the inspected organ (a large field of view surface also including image textures) can be recon-

structed from a video acquisition using the laser based SLS.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Structured-light systems (SLSs) are used to perform three-

dimensional (3D) measurement in various computer vision fields

such as robotic guidance [1], medical endoscopy [2–4], virtual

environment construction [5], and dimensional analysis of manu-

factured parts [6]. A basic SLS consists of a camera and a struc-

tured-light projector rigidly fixed with respect to the camera. A

known pattern of light is projected onto the scene and the camera

acquires images of the pattern modulated by the depth of objects

in the field of view (FOV).

The shape of the projected pattern particularly depends on the

application needs. On the one hand, a pattern of stripes enables

dense 3D reconstruction [7–9]. However, stripe patterns are

mainly used for 3D object modeling, e.g. for profilometry. On the

other hand, projecting a set of points [10,11] can be a solution

for very different computer vision tasks. When projecting a dense

point set, surfaces can be very accurately constructed with high

3D resolution. On the contrary, when projecting a sparse point

set, both 3D information and 2D image texture are available.

Although the 3D point resolution is lower, it can be sufficient for

applications where textures have to be preserved. For instance, in

medical 3D-endoscopy, it is of great interest to reconstruct a 3D

textured wide FOV of organs. When a 3D-endoscope acquires, from

different viewpoints, small FOV images and some 3D points are

placed at the periphery of the FOV, it is possible to compute tex-

tured surfaces [12]. These textured surfaces cannot be obtained

with patterns of stripes or with dense point patterns [2].

Whatever the projected pattern, the SLS must first be fully cali-

brated before performing any 3Dmeasurement. The SLS calibration

usually consists of two successive steps, namely the camera and

projector calibration. The former step is a standard problem in com-

puter vision [13]. In this paper, we focus on the latter step. We pay

special attention to the calibration of SLS projecting different kinds

of point patterns. Usually, the SLS calibration is based on the math-

ematical modeling of the projection of a light pattern in the space,

the model being expressed in the camera coordinate system. In the

literature, there aremainly two approaches. The first is based on the

pinholemodel: a camera projects a set of 3D points in the scene into

a set of 2D points located on the image plane. On the contrary, the

principle of a projector is to project a set of 2D points (located on the

projector focal plane) into the scene. A projector can therefore be

considered as a projective reverse camera [14,15]. In the second ap-

proach, the trajectory of each pattern element is modeled in the 3D

space. The projection of a set of stripes generates a set of planes, and

the calibration amounts to determining the plane equations. To do

so, many authors [7,9,16,17] have exploited the cross ratio geomet-

ric property to calibrate their SLSs equipped by a stripe projector.
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This property enables one to compute the 3D coordinates of the

projected pattern onto a calibration piece.

Unlike for patterns of stripes, few works are dedicated to the

calibration of SLSs equipped by a point pattern projector [18,19].

The SLSs proposed in [10,20,11] project a grid of points onto a

known surface using a laser beam and optics required for generat-

ing the grid. The projection angle between each laser point trajec-

tory and the central projection axis is fixed and known. To calibrate

the system, dedicated equipment is used to place a calibration

board perfectly orthogonal to the main projection axis and to dis-

place it very precisely to known positions. From the projector cal-

ibration methods presented so far, we notice that they usually

involve expensive equipments such as three orthogonal planes

[17] or dedicated and precise positioning devices [10,20,11]. In

addition to their expensive cost and their lack of flexibility, the per-

formance of these methods heavily depends on the precision of the

required calibration equipment.

We present an automated, flexible, point number independent

and accurate SLS calibration method that does not involve any

positioning device nor precise calibration pieces. Our method re-

quires a planar calibration board only, which is a paper sheet with

circular control disks attached to a planar PolyMethyl MethAcry-

late (PMMA) surface. A preliminary version of this active vision

system calibration method was sketched in the conference paper

[21]. In this paper, we show how the calibration can be extended

to other systems projecting different patterns, i.e., with a variable

number of points and various spatial distributions of the points

depending on the application. Our method is generic: it is able to

calibrate projectors using different kinds of point patterns. The cal-

ibration method does not depend on the number, color and spatial

distribution of the projected points.

The rest of this paper is organized as follows. In Section 2, we

detail our calibration method for a laser based SLS projecting

sparse point sets. We first describe the experimental setup and

then we focus on the projector calibration method itself consisting

of a pipeline of several algorithms. Finally, we briefly present the

3D point reconstruction principle using the calibrated laser SLS.

Section 3 shows that the calibration method described for sparse

point sets can also be used to calibrate SLSs working with a larger

set of points and with various spatial distributions of the points

composing the pattern. In this section, the patterns are obtained

with a pico-projector. Again, the experimental set-up is described.

Then, the procedure of Section 2 is slightly adapted. This adapta-

tion is related to 3D point reconstruction but the calibration meth-

od remains unchanged. In Section 4, the calibration method is

validated from the metrological point of view for both the laser

(sparse point set) and the pico-projector SLSs. For the latter SLS,

two point patterns are utilized. The number of points is increased

and the spatial distribution also differs with respect to the original

laser based SLS. Although a simple test object is used to compare

the reconstruction accuracy of both SLSs, the calibration method

can be used for various applications like dimensional analysis of

manufactured parts or medical applications. Section 5 illustrates

the potential of the calibrated laser SLS in a medical application:

3D endoscopy of bladder organs. We show that our SLS prototype

makes it possible to reconstruct a 3D large FOV surface of the inter-

nal bladder wall including textures from a video acquisition. More-

over, this SLS can be implemented on an endoscope [22], and the

surface representation facilitates bladder cancer detection [23].

2. Calibration of the sparse point laser SLSs

2.1. Experimental setup

Our sparse point SLS is composed of a CCD camera and a laser

projector being all rigidly fixed on a metallic plate (see Fig. 1).

The projector to camera angle is approximately equal to 30�. The

camera is a Basler Scout model equipped with a wide angle lens

(6 mm focal length) and acquires images with 768 � 576 pixels.

The structured-light is generated by a green laser collimated

source and a holographic binary phase lens (diffractive optics).

The laser beam passes through the holographic lens and diffracts

itself in eight new laser rays located on a cone in the 3D space.

The eight points are lying on a circle, but the algorithm described

in this section remains appropriate for other pattern geometries.

Because the camera and projector constitute a complete active

vision system, we start by describing the camera calibration meth-

od. Then we will move onto the projection calibration which is our

main contribution. Although the camera calibration is a classical

task, the calibration method is worth being summarized for two

reasons. This will allow us (1) to specify the complete projective

system geometry and (2) to introduce the projective transforma-

tions that are involved when a 2D image of a 3D scene is acquired

by the camera. All these notations and equations will be used later

in the projector calibration algorithm.

2.2. Camera model and calibration

The pinhole camera model involves two sets of parameters. The

extrinsic parameters describe the 3D rigid transformation relating

the wP3D = (wx3D,
wy3D,

wz3D)
T point in a world {w} coordinate sys-

tem Ow;~xw;~yw;~zwð Þ to the same point cP3D = (cx3D,
cy3D,

cz3D)
T ex-

pressed in the camera {c} coordinate system ðOC ;~xc;~yc;~zcÞ taking

the camera optical center as origin. This transformation involves

a 3 � 3 rotation matrix R and a 3D translation vector t:

cP3D ¼ R
wP3D þ t ð1Þ

The intrinsic parameters are related to the 2D projection onto

the camera image plane. This projection is modeled by three suc-

cessive steps. First, cP3D is projected onto the image plane yielding

a distortion free point c P
u = (xu,yu)

T according to:

xu ¼ f
cx3D
cz3D

; yu ¼ f
cy3D
cz3D

ð2Þ

where f refers to the focal length. The second step models the radial

lens distortion according to a polynomial model [24, p. 191] in r,

where r is the distance from c P
u to the projection of the optical cen-

Fig. 1. SLS prototype projecting a few points. The green laser rays are drawn to

show the trajectory of the projected points in the space. In practice, they are not

visible. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
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ter on the image plane. Following [25], we use a fourth order poly-

nomial obtained by removing the monomials of larger degrees:

xd ¼ xuð1þ k1r2 þ k2r4Þ

yd ¼ yuð1þ k1r
2 þ k2r

4Þ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2u þ y2u

p

8
><

>:
ð3Þ

where cPd = (xd,yd)
T stands for the observed (distorted) point, and k1

and k2 are radial distortion coefficients. This model is well suited to

camera optics involving strong barrel distortion [25]. The last step

brings cPd in the image coordinate system ðOim;~xim;~yimÞ taking the

upper left corner of the image as origin (see Fig. 3). This step in-

volves the (xC,yC) coordinates of the focal point projection on the

image plane and the pixel side lengths along the x and y axes, called

Sx and Sy, respectively:

xim ¼
xd
Sx

þ xC ; yim ¼
yd
Sy

þ yC : ð4Þ

To calibrate the camera in a complete manner, we use the pla-

nar calibration board of Fig. 2a including hundreds of small circular

disks and we apply Zhang’s method [27]: the camera acquires sev-

eral images of the calibration board, manually placed at different

positions. Due to the perspective geometry, the circular disks be-

come elliptically shaped in the images acquired by the camera.

These ellipses are segmented in each image using the method de-

scribed in [26] (see Fig. 2b). The ellipse centers being now available

for all viewpoints, Zhang’s method allows us to recover both the

extrinsic and intrinsic camera parameters (including the distortion

coefficients) from the knowledge of the real positions of the disk

centers on the calibration board [27]. In the following subsections,

we will only exploit the intrinsic camera parameters for the projec-

tor calibration.

2.3. Determination of the projector calibration board poses

Because our projector calibration method also involves a planar

calibration board, we demonstrate how to automatically deter-

mine the calibration plane equation from the images acquired by

the camera. This task is a prerequisite to the projector calibration

algorithm which will be fully presented in Section 2.4.

Our planar calibration board differs from the camera calibration

board of Fig. 2 as it contains four control disks only, placed in the

calibration board corners. We make this choice so that the calibra-

tion disks do not occupy the whole acquired image but only a lim-

ited part of it (for reasons which will become clear in Section 2.4).

Our projector calibration method requires the acquisition of at

least two images of the calibration board, manually set to different

positions k 2 {1, . . . ,K} with KP 2 while the camera is fixed (unlike

the methods [10,20,11], the calibration board displacement is done

manually and approximately with a rough translation along the

camera ~zc axis). For each position k, we define a related ‘‘world

coordinate system’’ fwkg ¼ ðOk;~xk;~yk;~zkÞ using three control disk

centers (CDC) among the four in such a way that~zk is orthogonal

to the calibration plane (see Fig. 3). We denote by cCi;k
3D ¼

cxi;k3D;
cyi;k3D;

czi;k3D

� �
; i 2 f1; . . . ;4g the CDC positions in the camera

coordinate system. When expressed in the world coordinate sys-

tem, the CDC coordinates do not depend on k because {wk} is local

to the calibration board. Therefore, we use the simplified notation
wCi

3D. For any i; wCi
3D is known and we have wzi3D ¼ 0. To determine

(a)

(b)

Fig. 2. Camera calibration. (a) Planar calibration board. The board is manually set to

different spatial positions and the (fixed) camera acquires an image for each

position. (b) Example of an acquired image of the calibration board. The ellipse

parameters are computed with the method [26].

Fig. 3. Laser SLS geometry. The calibration board is represented for two positions

k = 1 and 2. The origin of each related world coordinate system {wk} is set to one of

the control disk centers while the~xk and ~yk axes match the horizontal and vertical

directions in the 2D plane, and~zk ¼~xk ^~yk is orthogonal to the calibration plane. N

laser rays are being projected onto the calibration board. The ‘‘camera rays’’ Ri,k are

the lines ðOC ;
cPi;k

2DÞ ¼ OC ;
cPi;k

3D

� �
and the ‘‘laser rays’’ Dj are the N lines

OP ;
cPi;k

3D

� �
; i ¼ 1; . . . ;N for any calibration board position k.
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the calibration board position in the (fixed) camera coordinate sys-

tem {c}, we first remove the radial distortion from the observed

images [24, pp. 189–191]. Then, we segment the CDC in the

corrected images [26] yielding estimates of the cCi;k
2D positions. Fi-

nally, their corresponding world coordinate positions wCi
3D are used

together with the intrinsic camera parameters to define a system

whose unknowns include the extrinsic parameters Rk and tk link-

ing the camera coordinate system to the world coordinate system

representing the calibration plane. Specifically, combining Eqs. 1, 2

and 4 yields the projective model in the matrix form:

czi;k3D

cC i;k
2D

1

" #

¼ K cCi;k
3D ¼ K Rk

wCi
3D þ tk

� �
ð5Þ

where the camera matrix K gathers the intrinsic parameters:

K ¼

f=Sx 0 xC
0 f=Sy yC
0 0 1

2

4

3

5 ð6Þ

Following [28, Section 1.5], we rewrite (5) by remarking that
wz i

3D ¼ 0:

czi;k3D

cxi;k2D
cyi;k2D
1

2

64

3

75 ¼ K R1:2;k tk

2

64

3

75

wxi3D
wyi3D
1

2

64

3

75 ð7Þ

¼ ak

h1;k h2;k h3;k

h4;k h5;k h6;k

h7;k h8;k 1

2

64

3

75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hk

wxi3D
wyi3D
1

2

64

3

75 ð8Þ

where the 3 � 2 matrix R1:2,k gathers the first two columns of Rk

and Hk is a 3 � 3 matrix. At this point, we notice that Hk is a projec-

tive transformation relating the 2D points ðwxi3D;
wyi3D) located on

the calibration plane to their projection on the camera image plane.

The entry h9,k is set to 1 up to the introduction of the scale factor ak
in (8).

In the homogeneous system (8), the Hk parameters are un-

known together with ak and
czi;k3D. Advantageously, (8) can be recast

[28, Section 1.5] in the inhomogeneous system (9), where the only

unknown parameters are theHk parameters (ak and
czi;k3D do not ap-

pear anymore). For each i 2 {1, . . . ,4}, (8) rereads as a system of two

linear equations in the eight Hk unknowns:

h1;k
wxi3D þ h2;k

wyi3D þ h3;k � h7;k
wxi3D þ h8;k

wyi3D
� �

cxi;k2D ¼ cxi;k2D

h4;k
wxi3D þ h5;k

wyi3D þ h6;k � h7;k
wxi3D þ h8;k

wyi3D
� �

cyi;k2D ¼ cyi;k2D

(
ð9Þ

Moreover, (9) reads as a standard linear system of equations

depending on the unknown parameters in Hk. Since each

cCi;k
2D;

wCi
3D

� �
correspondence provides two equations and the CDC

are non-collinear, four correspondences i 2 {1, . . . , 4} are enough to

solve for the eight degrees of freedom of Hk [28]. Knowing K and

Hk, we can deduce R1:2,k, tk and the scale factor ak since the columns

of R1:2,k are of unit norm. The third column of Rk is determined by

computing the cross product of its first and second columns. Finally,
cCi;k

3D are obtained by applying (1) to wCi
3D using Rk and tk.

As the four cCi;k
3D points are now perfectly known for acquisition

k, we can easily deduce the calibration plane equation in the cam-

era coordinate system {c} by solving an over-determined system of

four equations in three unknowns.

2.4. Projector model and calibration

The projector can be seen as a projective reverse camera without

distortion because a diffractive lens does not induce any image

deformation.Weuse the samecalibrationboard images as in Section

2.3 (see Fig. 3) positionedwithmanual displacements. The acquired

images not only include the four calibration disks but also some

green laser points originating from the projector. In Section 2.3,

these calibration planes were numerically computed in the camera

coordinate system. We therefore consider that they are known.

On Fig. 3, the main laser ray is diffracted from a particular point

called projector optical center OP, yielding N laser rays Dj with

j 2 {1, . . . ,N}. The laser rays intersect each calibration plane yielding

a set of 3D points called cPi;k
3D

cPi;k
3D

� �
is the ith laser point projected

onto the kth plane, expressed in the camera coordinate system)

whose projections onto the camera image plane are denoted by
cPi;k

2D. Physically, a laser spot is projected from the projector optical

center onto the calibration board, and then onto the camera image

plane while the image is recorded.

The projector calibration is as follows. Starting from the K ob-

served images, we estimate the projector parameters, namely the

OP optical center and the Dj laser ray equations in four steps:

1. Segment the laser points (i.e., blobs of connected greenish pix-

els) in the images and compute their centers cPi;k
2D ¼ cxi;k2D;

cyi;k2D

� �
.

2. Calculate the cPi;k
3D coordinates.

3. For all i 2 {1, . . . ,N} and k 2 {1, . . . ,K}, match the obtained cPi;k
3D

points to their corresponding laser rays Dj. To calculate Dj, one

needs to estimate the OP position. However, the point-to-ray

matching can be done based on the approximate knowledge

of OP.

4. Determine all Dj laser ray equations and refine the OP position

estimation in the camera coordinate system.

We now elaborate each step.

2.4.1. Step 1: Automatic laser point segmentation

The acquired images are first preprocessed in order to remove

the distortion [24, p. 191]. The distortion removal is based on the

knowledge of the calibrated camera parameters (see Eqs. (3) and

(4)). For our SLS prototype, the structured light is greenish and well

contrasted with the background colors (gray and black). Therefore,

we can automatically segment the green laser points cPi;k
2D by thres-

holding the images in the Hue-Saturation-Value (HSV) color do-

main. Specifically, the images are recorded in the RGB format,

and they are converted to the HSV domain. Because the green color

yields a hue value equal to 120�, the basic idea is to keep the pixels

whose hue value is close to 120. However, the other gray (back-

ground) or dark (calibration control disks) pixels in the image do

not have a significant hue value since they are gray level pixels.

Thus, a single thresholding in the hue domain may result in false

detection of some gray level pixels together with the green pixels.

To overcome this problem, we perform another thresholding in the

saturation domain, as the saturation of a pure color (green) pixel is

maximum while a gray level pixel has a close to zero saturation.

These two image thresholding operations afford us to correctly

segment the green pixels. We refer the reader to the Pratt’s book

[29] for further details about the HSV format.

Once the green pixels have been detected, we apply an erosion

procedure to compute the center of the areas where the neighbor-

ing green pixels have been detected. Fig. 4 shows an example of the

segmentation results where the control disks are segmented as

well. As mentioned earlier, the latter are only used to determine

the calibration plane equation in the camera coordinate system

for each viewpoint.

The resulting set of cPi;k
2D laser point centers will be used in the

next step to compute the 3D position of each laser point cPi;k
3D in

the camera coordinate system.

2.4.2. Step 2: cPi;k
3D Computation

The intrinsic camera parameters are used to project the cPi;k
2D

points in the 3D space, yielding a set of Ri,k camera rays all passing

A. Ben-Hamadou et al. / Computer Vision and Image Understanding 117 (2013) 1468–1481 1471



through OC (see Fig. 3). Finally, the cPi;k
3D coordinates are determined

by computing the intersection of each Ri,k camera ray with the cor-

responding plane k.

Although the 3D laser points cPi;k
3D are now available, they are

not yet matched to their respective laser rays. For each calibration

plane k, we need to associate each cPi;k
3D point (i = 1, . . . ,N) to some

laser ray Dj originating from the projector optical center OP. More-

over and importantly, OP also needs to be estimated in the camera

coordinate system.

2.4.3. Step 3: Automatic matching of the cPi;k
3D points to their

corresponding Dj laser rays

This matching step is based on the following idea. Assume that

OP is perfectly known. Firstly, we remark that Dj are all passing

through OP, and the K points to be matched to a given Dj ray are

the K closest points to Dj. Secondly, for a given calibration board

pose k (e.g., for k = 1), we remark that Dj are the N rays joining OP

and cPi;k
3D; i ¼ 1; . . . ;N. From this definition of the Dj rays, the OP po-

sition is optimized in such a way that N groups of K points are all

simultaneously close to the N Dj rays. In the following, we use the
cPj;1

3D notation to indicate that the 3D points of the first calibration

plane are already associated to their corresponding Dj lines, and

we keep the cPi;k
3D notation for the other calibration planes k > 1 be-

cause we must establish a one-to-one correspondence between

each cPi;k
3D and some Dj ray.

In computer vision, the directed Hausdorff distance (DHD) is an

efficient measure to register points on 3D surfaces [30–32]. We

estimate a first (coarse) OP position, denoted by bOP , by minimizing

the DHD between the laser rays and the cPi;k
3D laser points:

bOP ¼ argmin
OP

DHD D; cPi;k
3D

n o� �
ð10Þ

where D gathers the set of laser rays Dj passing through OP and
cPj;1

3D

(j = 1, . . . ,N). The DHD is defined as [30]:

DHD D; cPi;k
3D

n o� �
¼ max

i2f1;...;Ngk2f2;...;Kg
min

j2f1;...;Ng
d cPi;k

3D;Dj

� �� 	
ð11Þ

where d stands for the Euclidean distance between a point and a 3D

line. In words, using the DHD ensures that the K cPi;k
3D points

matched with a given ray Dj are indeed the K closest points to Dj.

We use the simplex optimization algorithm [33,34] since the cost

function (11) is not analytically differentiable. At each iteration,

the OP position is updated and the Dj lines are updated accordingly.

Fig. 5a and b illustrates the initial simplex and the simplex evolu-

tion while converging to the optimal position of the projector opti-

cal center. Since (10) is a 3D optimization problem, the simplex is a

tetrahedron region [34]. By construction of the active vision system,

we approximately know the relative position of the diffractive lens

(i.e., that of OP) with respect of the camera optical center OC. Thus,

we can define the initial tetrahedron in such a way that OP is close

to a tetrahedron edge. The tetrahedron of Fig. 5a is centered on the

camera optical center and the edge lengths are set to the camera to

projector distance (�100 mm). The iterations of the simplex algo-

rithm are stopped when the tetrahedron volume is below a given

threshold which is chosen small enough for the coarse estimation

of bOP .

When the optimization stage is completed, each cPi;k
3D has been

assigned to its respective laser ray Dj: Dj is set to the closest ray

to cPi;k
3D. In the following, with a slight abuse of notations, we re-

name cPi;k
3D by cPj;k

3D to express that for a given calibration board k,

there is a one to one correspondence between i and j.

2.4.4. Step 4: Final refinement of the Dj parameters and the projector

optical center

In the previous step, the Dj rays were constrained to pass

through the cPj;1
3D laser points of the first calibration plane. Here,

we improve the Dj estimation by relaxing this constraint and tak-

ing all cPi;k
3D positions into account (for kP 1). This improvement

also yields a finer estimation of OP.

To decrease the error d cPj;k
3D;Dj

� �
, we impose that Dj passes

through OP and the center of mass (i.e., the mean position over k)
cPj

3D of all cPj;k
3D points matched to Dj. The center of mass is ideally

located on Dj when cPj;k
3D are exactly known and there is no numer-

ical error. Since the cPj
3D points are known and independent of OP,-

OP is the only remaining unknown parameter. OP is estimated as

the position minimizing the sum of Euclidean distances between

all cPj;k
3D points and their related Dj ray:

OP ¼ argmin
OP

XK

k¼1

XN

j¼1

d cPj;k
3D;Dj OP ;

cPj
3D

� �� �
: ð12Þ

Again, we use the simplex algorithm. To initialize the algorithm, we

use the bOP position already obtained in step 3. This starting position

is close to the final (expected) position of the projector optical

center.

2.5. 3D laser point reconstruction

We consider a single acquisition of some unknown surface

(which is not necessarily planar) using our calibrated projective

system. This yields an image of the surface containing the N pro-

jected laser rays cPi
2D as well. We show that our calibration method

enables the reconstruction of the N laser points (named cPi
3D) that

are being projected onto the imaged surface. The 3D reconstruction

in the camera coordinate system is done as follows:

1. Remove the radial distortion from the 2D acquired image

[24, pp. 189–191].

Fig. 4. Segmentation of a calibration image. (a) Both control disks and laser points are detected. (b and c) Show a zoom in on a segmented disk and a laser point, respectively.

The cross symbols depict the estimated center positions.
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2. Segment the laser points in the image and compute their

centers cPi
2D.

3. Use the intrinsic camera parameters to project cPi
2D into the

3D space, yielding a set of camera rays Ri, i = 1, . . . , N.

4. Match each camera ray Ri to its corresponding laser ray Dj.

Towards this end, we exploit that the projection of some

laser ray Dj onto the camera image yields an epipolar line

[28, Section 1.10] on which cPi
2D should lay. We remark that

the epipolar geometry between two cameras is unchanged

when considering a camera and a projector seen as a

reverse camera (see Fig. 6). As the number of epipolar lines

is limited (we set N = 8 in practice), we assign each cPi
2D

point to the closest epipolar line, leading to the matching

of each camera ray Ri with some projector ray Dj.

Regarding the last step, both camera and laser rays are theoret-

ically passing through the same cPi
3D point located on the 3D sur-

face, thus cPi
3D may be reconstructed by intersecting both lines Ri

and Dj. In practice, Ri and Dj are likely to not exactly intersect, thus

we estimate cPi
3D as the midpoint of the smallest segment joining

both lines, as shown in Fig. 6.

3. Calibration of the pico-projector SLS and adapted 3D point

reconstruction

3.1. Experimental set-up and calibration data acquisition

Our second SLS (see Fig. 7a) is composed of a JAI camera of res-

olution 1920 � 1080 pixels. The same 6 mm objective as for the

sparse point laser SLS is mounted on the camera. A digital light

processing (DLP) pico-projector (Optoma PK 301) is used to illumi-

nate the scene with a larger number of points. The constant angle

between the camera and the pico-projector remains equal to about

30�. Two different patterns are calibrated in separate procedures: a

color coded pattern of 24 � 15 squares and a monochrome random

pattern of 58 green squares (see Fig. 7b and c). It is worth noticing

that no color or other code is used during the calibration step. This

information may be required for the 3D-point reconstruction after

SLS calibration depending on the density of points.

To calibrate the SLS, the planar board of Figs. 2 and 7a is again

manually placed into the scene. For a given calibration board posi-

tion, two images are systematically acquired. The first is acquired

with the room light switched on and without pattern projection.

This image contains only the disk matrix as shown in Fig. 7a. For

(a) (b)

Fig. 5. bOP estimation in the camera coordinate system. Two acquisitions of the calibration board are considered (K = 2) and N is set to 8. The red arrows represent the camera

coordinate axes~xc ; ~yc and~zc . The blue dots and green lines depict the K � N = 16 cPi;k
3D laser points (inputs) and the (estimated) Dj laser rays, respectively. The green lines pass

through the cPi;1
3D points of the first acquisition and the best vertex of the current tetrahedron, i.e., the vertex yielding the minimal value of the cost function (11). (a) Initial

simplex: the tetrahedron is centered on the camera optical center of coordinates [0,0,0]T and the tetrahedron edges are of length 100 mm. (b) Simplex evolution according to

the iterations of the minimization algorithm. For readability, only three vertices of the tetrahedron are represented from iteration 1. When the optimization is completed, the
cPi;k

3D points almost exactly lay on the laser rays.

Fig. 6. Reconstruction of the cPi
3D laser point on the imaged surface using the

epipolar geometry.
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the second image, the room light is switched off and a pattern is

projected onto the calibration board. Now, the disks of Fig. 7a are

invisible while the structured light appears as in Figs. 7b and c.

3.2. Pico-projector SLS calibration

The camera is calibrated as described in Section 2.2 with the

disk matrix images and using Zhang’s algorithm [27]. The four

steps described for the sparse point projector calibration in Section

2.4 remain unchanged when calibrating the pico-projector SLS

(projected point segmentation, 3D point reconstruction, matching

of 3D-points to their projector rays, and refinement of the projector

parameters). The only small difference with the sparse laser point

set SLS occurs during the computation of calibration board planes.

Instead of using the four control disks of Fig. 4, all disk centers of

the camera calibration board of Fig. 7a are now used to estimate

the plane poses. The plane computation method of Section 2.3 re-

mains unchanged.

We actually simplified the laser based SLS calibration described

in Section 2 involving two calibration boards. In this procedure, dif-

ferent poses were used for the camera and the projector. Here, the

pico-projector SLS is calibrated with a unique calibration board and

two acquired images per board position. This facilitates the practi-

cal positioning of the board by reducing the number of board dis-

placements. Because they are common to both the camera and

projector calibrations, these displacements are done only once.

The use of single calibration board can also be applied in the cali-

bration procedure of the sparse point set SLS of Section 2. Con-

versely, the calibration board with four control disks (Fig. 4)

could be used to calibrate the pico-projector.

3.3. 3D point reconstruction

The reconstruction method of Section 2.5 has been slightly

modified to cope with the color coded pattern because there is a

larger number of points. The only step to be adapted is the match-

ing of the points in the acquired images to their projector rays. For

the sparse point SLS, this matching is possible without ambiguities

using solely the epipolar geometry. For the pico-projector SLS, the

epipolar geometry alone may not be systematically sufficient for

the matching step. For the color coded pattern, the M-array (also

called perfect map [35]) of 24 � 15 points was built with the meth-

od described in [36] maximizing the Hamming distance. A given

color code can only appear once in the 3 � 3 point neighborhoods

of the M-array.

4. Quantitative evaluation of the 3D point reconstruction

We evaluate the 3D point reconstruction accuracy of the laser

(Section 4.1) and pico-projector (Section 4.2) SLSs by acquiring

images of a simple 3D object whose geometry is precisely known.

This test allows for comparison of the results obtained for both

SLSs and a discussion on the adequacy of the calibration method

to different active vision systems.

Fig. 7. Pico-projector SLS. (a) Experimental set-up. (b) Color coded pattern (green, red, blue squares). (c) Monochrome random pattern of green squares. (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4.1. 3D reconstruction results with the laser SLS

4.1.1. Laser SLS experimental setup, data acquisition and evaluation

criteria

The test object is a ‘‘3D step’’ composed of two parallel half-

planes p1 and p2 laying at a distance h = 21.95 mm (see Fig. 8a).

The step shape is inspired by the SLS prototype evaluation of Chan

et al. [20]. Our complete data acquisition procedure includes two

steps:

1. Acquisition of P = 120 images of the 3D object using the active

vision system (see Fig. 8b). These images are split into two

groups of 60 images. For the first 60 acquisitions, the camera
~zc axis is maintained orthogonal to the object surface and the

camera to object distance varies in between 150 and 300 mm.

For the other 60 acquisitions, the camera to object distance is

set to 250 mm while the viewing angle varies from �60� to 60�.

2. Acquisition of KP 2 images of the calibration board of Fig. 4a

leading to the active system calibration. For each acquisition,

the calibration board is manually maintained in front of the

camera without accurately controlling its distance and orienta-

tion with respect to the SLS.

For each image p 2 {1, . . . ,P},N = 8 laser points cPi;p
3D (i 2 {1, . . . ,N})

are being reconstructed according to the procedure described in

Section 2.5. The image acquisitions are done in such a way that four

laser points are projected on each half-plane p1 and p2 (see Fig. 8b).

Therefore, each half plane equation can be reconstructed from the

four related points. The orientation angle hp between both half

planes and their relative distance hp are being evaluated subse-

quently (ideally, we have hp = h and hp = 0� since the planes are par-

allel). These two criteria allow us to assess the accuracy of our

method to preserve the shape and dimension of a scene. In addition,

we define the 3D reconstruction error as follows. For each acquisi-

tion p and each reconstructed point i, we compute the Euclidean

distance (denoted by e
i,p) between cPi;p

3D and its corresponding half

plane. The mean error is defined by:

elaser ¼
1

NP

XP

p¼1

XN

i¼1

ei;p ð13Þ

We also define the normalized error as the ratio ei;p
%

¼ ei;p=czi;p where
czi,p is the depth of the reconstructed point with respect to the cam-

era device. Again, we define the mean normalized error elaser
%

by

averaging ei;p
%

over both i and p.

We define the calibration robustness as the 3D point recon-

struction accuracy with respect to the number K of calibration

images. To assess the robustness, we perform three tests by setting

K to 2, 10 and 20 images, respectively. For each test, P evaluations

of hp and hp are performed in addition to the elaser and elaser
%

evalua-

tions. Moreover, for a given value of K, we study the precision of

reconstruction by keeping the camera to object distance constant

while varying the viewing angle, and conversely, varying the cam-

era to object distance while maintaining the camera~zc axis orthog-

onal to the object surface.

4.1.2. Laser SLS results and discussion

The calibration robustness results are gathered in Table 1. We

observe that the reconstruction errors are small whatever the

number K of calibration images: elaser is equal to 0.15 mm while

elaser
%

amounts to 0.07%. The mean values of hp are very close to h

while the hp values tend towards h = 0�. Again, these values do

not depend on K. These results indicate that the robustness sensi-

tivity is very low. We emphasize that the calibration is flexible, as

the calibration plane is approximately positioned perpendicular to

the camera ~zc axis. In our tests, no particular attention was paid

to the calibration board position when holding it in front of the

camera as long as it is approximately perpendicular to the camera

axis. Because two image acquisitions are enough for accurate cali-
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Fig. 8. Reconstruction of 3D points with the laser SLS. (a) 3D step volume for metrological evaluation of the calibration procedure. (b) Acquired image. Four laser points are

spread over each parallel plane. (c and d) Representations of the N = 8 reconstructed points in the camera coordinate system.
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bration, we will always set K = 2 in the following precision evalua-

tion tests.

We first evaluate the point reconstruction accuracy with re-

spect to the camera to object distance. Here, the camera~zc axis is

orthogonal to the 3D step half-planes and the camera to object dis-

tance lays in the interval [150,300] mm. The 60 acquisition dis-

tances are regularly spaced in this interval. The mean error on hp
is sub-millimetric (0.22 mm) and the related standard deviation

is equal to 0.29 mm. The average angle hp is equal to 0.26� and

the related standard deviation is equal to 1.06�. We note that both

errors on hp and hp slightly increase with the camera to object

distance.

We now assess the accuracy with respect to the viewing angle

which is defined as follows. The viewing angle is set to 0� when

the camera ~zc axis is orthogonal to the object surface, and to the

projector to camera angle (�+30�) when the laser rays are orthog-

onal to the object surface. Fig. 9 gathers the hp and hp evaluations

obtained for different viewing angles ranging from �60� to 60�. It

is noticeable that the hp values are often slightly underestimated

and that the least errors on h are obtained when the camera axis

is orthogonal to the half planes. The errors are gradually increasing

with the viewing angle but they remain limited (lower than

1.5 mm and 1.5�, respectively). Therefore, the shape (here keeping

parallel planes) of the 3D step can be accurately restored even for

large viewing angles. Let us stress that the maximum viewing an-

gle configuration (60�) is extreme and unrealistic in many applica-

tions, as in medical endoscopy where the endoscope is often

orthogonal to the surface being imaged; see Section 5. Similarly,

large angles are usually avoided in dimensional analysis of manu-

factured parts for which the acquisition conditions can be con-

trolled. In these applications, the 3D point reconstruction is very

accurate. While being more flexible, the related reconstruction er-

rors are of same magnitude as those reported in [10,20].

In addition to the above results, we tested the sensibility of the

simplex algorithm with respect to the initial solution for steps 3

and 4 of the calibration process. Regarding step 3, we experimen-

tally verified that the same OP solution is reached when initializing

the simplex with a regular tetrahedron centered on the optical cen-

ter of the camera while varying the tetrahedron edge lengths.

When the edge length is large enough to approximately cover

the camera to projector distance, the simplex algorithm systemat-

ically converges to the same solution. The optimization process of

step 4 is always completed within a few iterations since the bOP po-

sition yielded by step 3, which is used as starting position, is very

close to the expected position of the projector optical center.

4.2. 3D reconstruction results with the pico-projector SLS

4.2.1. Data acquisition with the pico-projector SLS and result

evaluation criteria

We repeat the same experiment as in Section 4.1.1 for (i) the

monochrome random pattern and (ii) the color coded pattern.

Let us briefly recall this procedure. For each pattern, the recon-

struction accuracy of the calibrated pico-projector SLS is tested

using the step edge of Fig. 8a. Again, the projected points are

equally spread over the half planes p1 and p2. Three images are ac-

quired for camera/object distances of about 20, 30 and 40 cm. The

step edge orientations are arbitrary (see Fig. 10).

It is noticeable that our algorithm only takes the (radial) distor-

tions due to the camera into account, but not the projector distor-

tions. The point reconstruction accuracy confirms that the latter

distortions can potentially be neglected (according to the applica-

tion requirements). However, correcting the distortions due to the

pico-projector may help to further improve the reconstruction

accuracy when high precision is required.

The edge height h = 21.95 mm and the angle h = 0� are again

ground truth values used for the reconstruction result assessment.

Moreover, for each pattern, the Euclidean distances e
i,p between

the ith reconstructed 3D point of acquisition p and its correspond-

ing half-plane are used to compute the mean reconstruction error

epico ¼
1

NP

XP

p¼1

XN

i¼1

ei;p ð14Þ

where p 2 {1,2,3} (P = 3) and the point index i belongs to {1, . . . ,N}.

The number of points is equal to N = 58 and 360 = 24 � 15, respec-

tively for the monochrome random pattern and the color coded

pattern.

4.2.2. Results and discussion

Fig. 10a and b shows the step edge acquired with the color

coded and the monochrome random patterns, respectively.

Fig. 10c and d represents the corresponding reconstructed points

on the step. The point to half-plane distance is in average equal

to a quarter of a millimeter for both patterns. Table 2 gives the

mean hit p and hp measured values which are ideally equal to h

Table 1

Robustness analysis: errors obtained for the reconstruction of the step target using

three different calibration settings: K = 2, 10 and 20 images. The values within

brackets are the differences between the mean recovered hp value and the real h

value, equal to 21.95 mm. The real h value is 0�.

Number of images used for projector calibration

K = 2 K = 10 K = 20

Mean hp value 0.33� 0.35� 0.34�

Mean hp value 21.62(�0.33 mm) 21.70(�0.25 mm) 21.67(�0.28 mm)

�elaser ðmmÞ 0.150 0.142 0.146

�elaser
%

(%) 0.075 0.071 0.073
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Fig. 9. 3D reconstruction accuracy with respect to the viewing angle for the ‘‘step

target’’ experiment. Plot of (a) the mean evaluation of hp and (b) the mean

estimated angle hp between both half planes with respect to the viewing angle, i.e.,

the angle between the camera~zc axis and the normal axis to the half planes. The hp
and hp values are being estimated for P = 60 image acquisitions, and averaged. The

horizontal lines indicate the ideal values h = 21.95 mm and h = 0�. The mean and

standard deviation on hp are 21.48 mm and 0.37 mm, and the mean and standard

deviation on hp are 0.33� and 0.81�.
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and h = 0�, respectively. The edge heights are measured with sub-

millimeter error and the two half planes are almost parallel consid-

ering the small hp angles computed with the reconstructed points.

The shape and dimensions of the step edge can be recovered with

both patterns with similar accuracy.

4.3. Overview on the laser and pico-projector SLS results

Both laser based and pico-projector SLSs exhibit accurate recon-

struction results. Tables 1 and 2 show that the reconstructed points

are very close to the planes for both SLSs. This accuracy is of the

same order of magnitude as that of other reference calibration

methods dealing with point pattern projectors [2,3].

In conclusion, we have demonstrated that our calibration meth-

od is applicable to very different kinds of projectors. Moreover, it

can handle various point densities: very sparse patterns with 8 la-

ser points, monochrome random patterns with 58 points, and color

coded patterns with 360 points. Calibration methods for point pat-

tern projectors are often conceived for a given number of points.

Fig. 10. Step edge reconstruction examples with the pico-projector SLS. (a) Projected color coded pattern. (b) Projected monochrome random pattern. (c) Reconstruction of

the step edge in three positions (increasing distances and various orientations) with the color pattern. The step edges are placed in the camera coordinate system {C} and the

green lines represent the calibrated projector lines originating from the color points of the pattern. Op is the calibrated projector optical projector position. (d) Reconstruction

of the step edge in three positions with the monochrome (green) random pattern. (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)

Table 2

Reconstruction errors with the pico-projector SLS. The values within brackets are the

differences between the mean recovered hp value and the real h value, equal to

21.95 mm. The real h value is 0�. The values after the ± symbols are standard

deviations in mm. �epico
%

stands again for �epico values that were normalized with respect

to the reconstructed point depths (see Section 4.1.1).

Pattern type

Green random pattern Color coded pattern

Mean hp value 0.56� ± 0.39� 0.25� ± 0.08�

Mean (mm) hp value 21.67(�0.28 mm) ± 0.34 22.33(+0.38 mm) ± 0.63

�epico (mm) 0.25 0.3

�e
pico
%

(%) 0.076 0.089
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They are based on a specific (known) spatial distribution of the

points in the images, which is exploited to find the correspondance

between the points composing the pattern and their projection in

the images. On the contrary, the proposed method is generic. The

projected points in the calibration images are automatically

grouped (Eq. (10)) and then associated to the corresponding pro-

jector rays (Eq. (12)).

5. Textured surface reconstruction with the calibrated laser SLS

Dense point SLSs are widely used in industrial applications e.g.,

for quality control or dimensional analysis of manufactured parts.

On the contrary, the use of a sparse point SLSs is less frequent. The

goal of this section is to illustrate by means of a medical applica-

tion that a sparse point SLS can be of high interest when 3D tex-

tured large FOVs have to be built. In this medical application,

surfaces must not be constructed with high accuracy since only

global shapes matter. Moreover, the surfaces in the images have

not to be hidden by dense point clouds during the acquisitions.

These constraints justify the choice of a sparse point SLS.

5.1. Motivation and experiments

Medical video-endoscopic imaging systems are essential for

minimal invasive surgery (laparoscopy) [37] or for cancer diagno-

sis in hollow organs, e.g., in the bladder in the case of cystoscopy

[23]. For a cystoscopic examination, the endoscope (cystoscope)

is close to the internal bladder wall so that each image of the vi-

deo-sequence, taken individually, visualizes only a small area of

the surface of interest. Cancers being spread over a large area of

the bladder epithelium, the clinician (urologist or surgeon) has to

mentally reconstruct large 3D FOVs. This facilitates neither the

diagnosis nor the follow-up of lesion evolution. For these reasons,

it is most useful to numerically reconstruct a 3D image with a large

FOV of the inspected organ from the individual images acquired by

the camera. This image is also called a mosaic or panoramic image.

Although for underground inspection, 3D mosaicing algorithms

have been proposed for spherical scanning devices acquiring large

FOV images (the camera captures all areas around the optical cen-

ter within 360� horizontally and 60� vertically) [6], 3D mosaicing

remains an open problem in medical endoscopy where the images

cover a local FOV. However, mosaicing algorithms have been

Fig. 11. Acquisition with the SLS prototype of Fig. 1 of video image sequences of a

cylinder phantom (a) and a wave phantom (b) on which a pig bladder panoramic

image has been stuck. This texture is quite realistic since even urologists cannot

distinguish pig bladder textures from human bladder textures.

Fig. 12. Reconstruction of 3D points on the cylinder phantom from a video

acquisition while the laser SLS moves inside the phantom. N = 8 points are

reconstructed per frame. All points are placed in the camera coordinate system of

the first acquisition. The eight black dots depict the reconstructed points for the

first camera position {c}.
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proposed in 2D for the bladder [23,38–40]. In the past, different

authors have shown that 3D information can be recovered with ac-

tive vision endoscopes. In [2], a two channel endoscope was used,

the first channel being dedicated to the structured light projector

while the second was used for image acquisition. In laparoscopy

[3], an active vision method was designed to reconstruct 3D infor-

mation in the abdominal cavity. Specifically, the structured light is

projected through the operative channel and the images are ac-

quired through the endoscope channel. In [2,3], only surfaces can

be reconstructed because the projected pattern is dense, so it is

superimposed to the image texture which is lost.2 The implementa-

tion (miniaturization) of the active vision principle of the laser based

SLS on an endoscope is currently in progress in our laboratory.

Although the size of the prototype of Fig. 1 is much larger than that

of real medical endoscopes, the following experiments allow us to

validate the potential of the sparse point SLS for medical endoscopy.

Using two phantoms of known geometry, we show that our SLS

affords us to reconstruct 3D large FOV textured surfaces of the

bladder. The phantoms representing surfaces with realistic bladder

textures are shown on Fig. 11a and b. The first phantom is a cylin-

der of radius 19 cm. This simple phantom is designed to verify that

our SLS makes it possible to restore the surface curvature of a cyl-

inder. The second phantom is a more complex (non-convex)

‘‘wave’’ surface for which the viewing angle (the camera to surface

angle) is varying depending on the local curvature of the surface.

The wave period is equal to 8 cm and the wave depth, i.e., the dif-

ference between the minimal and maximal surface depths, is equal

to 2 cm. The curvature variations are actually extreme in compar-

ison with those of a bladder surface whose shape is approximately

ellipsoidal. Indeed, the bladder is filled with a saline solution

Fig. 13. 3D cartography of the wave phantom of Fig. 11b from a video-acquisition. (a and b) Image acquisition for time varying viewpoints and reconstruction of N = 8 laser

points for each viewpoint, leading to the positioning of N � P 3D laser points (with P the number of acquisitions) in a common coordinate system, i.e., that of the first

acquisition. For each subfigure, the local imaged area is the domain delimited by green lines in the lower right frame and the corresponding acquired image is shown on the

lower left frame. (c and d) A 3D mesh of the surface is constructed from the N � P 3D points on which the image textures are superimposed. (e) Final 3D surface including

textures.

2 When only few pixels are covered by the laser points, the color of homologous

pixels from other images in the sequence can be used to replace the laser pixels by

‘‘real’’ texture when the mosaic is constructed. This is not possible for dense point

sets. Moreover, 3D mosaicing algorithms fail when too much pixel texture is lost due

to pattern projection.
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during its examination, and a period of the wave phantom simu-

lates the bladder deformation due to a neighboring organ. Using

the laser SLS, we capture a video sequence for each phantom, each

acquisition corresponding to an image including a 2D local view of

the surface texture and the N = 8 reconstructed laser point posi-

tions on the surface, expressed in the camera coordinate system.

For bladder endoscopy, when the endoscope to bladder surface dis-

tance is 1 cm, each acquired image scans a local surface area of a

few square centimeters. Although the dimensions of both the laser

SLS prototype and surface phantoms are unrealistic for bladder

endoscopy, we keep the ratio viewing distance vs area of local

scanned surface constant to show the feasibility for bladder endos-

copy. We refer the reader to Fig. 13a–c which displays the local im-

aged area and the corresponding acquired images of the wave

phantom for three acquisitions.

Because the SLS moves inside the phantom, the camera coordi-

nate system position is changing. Therefore, it is necessary to

determine the 3D rigid transformation linking two consecutive

SLS positions in order to position the points corresponding to the

acquisition frame p + 1 into the camera coordinate system of frame

p. This surface construction problem is not obvious because the 3D

points computed for two consecutive acquisition times do not cor-

respond to homologous positions on the object surface. In [12], we

proposed an optimization algorithm which iteratively finds the 3D

rigid transformation giving the SLS displacement between two

image acquisitions. The optimization process is guided by the reg-

istration of both acquired images p and p + 1. By repeatedly apply-

ing this algorithm to each pair of consecutive images, we

reconstruct a 3D panoramic view of the imaged surface by placing

all N � P 3D points in a common coordinate system, where P

denotes the number of camera acquisitions. These points are then

used to reconstruct a mesh surface on which the data image tex-

tures can be projected knowing the camera calibration parameters.

5.2. Mosaicing results

In order to validate the potential of the sparse point SLS for

medical endoscopy, we show a qualitative display of the 3D recon-

structed points together with the textured images. For the cylinder

phantom experiment, the displacement of the SLS prototype inside

the phantom is a combination of translations, rotations and scale

changes. Fig. 12 represents all 3D points, placed in the camera

coordinate system of the first acquisition (p = 1). These results

are in good agreement with the surface shape as all reconstructed

points lay very close to the cylinder surface. The placement of the

points of the camera coordinate system for viewpoint p + 1 in that

of acquisition p is done with an average error equal to 0.06 mm.

Regarding the wave surface, Fig. 13 displays a few images illustrat-

ing the whole textured surface reconstruction process.3 Fig. 13a–c

includes the current viewpoint and the current FOV of the camera

for three acquisitions, together with the 3D reconstructed points in

the coordinate system of the first acquisition. Progressive stages of

the textured surface construction are illustrated on Fig. 13d and e.

The partial and complete 3D panoramic images are displayed under

two different viewpoints for better visualization of the surface

curvatures. We conclude that the reconstructed shapes are in good

agreement with the wave surface geometry. Moreover, the 2D

textures in the panoramic image are spatially continuous and

correctly superimposed to the 3D reconstructed surface.

Although the panoramic surface (and image) reconstruction is

not the main purpose of the present paper, we quantify the surface

reconstruction error by evaluating the mean error (over N) done

while positioning the N laser points of acquisition p + 1 in the cam-

era coordinate system of acquisition p. Actually, this error is the

conjunction of two errors, namely the calibration errors by our

active vision system (algorithm of Section 2.5) and the movement

error related to the placement of points of image frame p + 1 in the

camera coordinate system of acquisition p (mosaicing algorithm).

The overall error amounts to 0.06 and 0.30 mm for the cylinder

and wave phantoms, respectively. This error is mostly due to the

endoscope movement error: it is related to a limitation of the

mosaicing algorithm which makes the assumption that the local

imaged area acquired by the endoscope are almost planar. This

assumption is clearly not met for the wave phantom acquisitions.

This mosaicing error source is discussed in details in [12]. Note also

that for bladder endoscopy, the goal is to reconstruct realistic sur-

face shapes with textures but it does not make sense to perform

surface reconstruction with sub-millimeter precision, because the

bladder is an elastic organ that is prone to deformations (these

deformations are limited because the bladder is filled with an iso-

tonic saline solution during the examination).

6. Conclusion

The proposed calibration method for point based SLSs is flexible

for two main reasons.

Firstly, it requires neither any expensive equipment nor precise

positioning devices. A simple planar board is manually placed in

the frustum of the SLS while the operator interventions are mini-

mized. It has been shown that two acquisitions are sufficient to

calibrate the projector and a single board can be used to calibrate

both the projector and the camera.

Secondly, there is no constraint regarding the number of points

in the pattern, their color, their spatial distribution, and the nature

of the information (coded or random pattern). Such flexibility is

interesting for both industrial and medical applications. This flexi-

bility is not obtained at the expense of accuracy since the

reconstruction results presented in this paper are as precise as

other SLS systems [2,3].

By showing that our calibration method works with two very

different projectors, we prove that it is well suited to different

applications. For instance, a sparse point SLS may be useful for

touchless testing of industrial materials, since it would provide

textures of the inspected material which are complementary to

the metrological surface measurements [41,42]. We showed that

constructing surfaces with textures is enabled in medical endos-

copy (cystoscopy). In this application, the textures have to be

preserved while only a sparse set of points is reconstructed for

each endoscope viewpoint (the video-sequence includes many

images). By placing all points in a common coordinate system, a

textured 3D large FOV is obtained and bladder cancer diagnosis

is facilitated.The construction of a 3D cystoscope prototype is

currently in progress in our laboratory. Preliminary results with

the proposed calibration method show that the 3D point recon-

struction remains possible with sub-millimetric accuracy although

the 3 mm baseline (distance between the camera and projector

optical centres) is smaller.

In the proposed method, the camera and projector are sequen-

tially calibrated. Because the camera calibration errors propagate

to the projector calibration, one perspective is to test a two-step

refinement algorithm as proposed in [43] to compensate these

propagation errors. The first step consists in the sequential camera

and projector calibration we have proposed. The second step is a

joint projector and camera parameter adjustment improving the

3D point reconstruction accuracy. Regarding data distortion, only

the barrel distortion due to the camera optics was corrected. An-

other perspective of this work is to take into account distortions

3 A video showing the construction of the textured wave phantom surface is

provided to the reviewers as a Supplementary material.
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into the projector model. With the laser based projector, no distor-

tion can occur. With digital light processing projectors, integrating

distortion parameters into the projector model can be interesting

to test whether the reconstruction accuracy can be improved. In

our distortion free projector model, all pico-projector rays are pro-

jected from a same point, namely the optical centre of the projector

optics. In practice, due to the distortions, each projector line orig-

inates from different points in the space. Our small reconstruction

errors seem to indicate that these points are close to the optical

centre. However, this assumption and its impact on the reconstruc-

tion accuracy have to be analyzed by testing a projector model

with rays originating from different points.
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